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Abstract— The objective of this work is to enable manip-
ulation tasks with respect to the 6D pose of a dynamically
moving object using a camera mounted on a robot. Examples
include maintaining a constant relative 6D pose of the robot
arm with respect to the object, grasping the dynamically
moving object, or co-manipulating the object together with
a human. Fast and accurate 6D pose estimation is crucial to
achieve smooth and stable robot control in such situations. The
contributions of this work are three fold. First, we propose a
new visual perception module that asynchronously combines
accurate learning-based 6D object pose localizer and a high-
rate model-based 6D pose tracker. The outcome is a low-latency
accurate and temporally consistent 6D object pose estimation
from the input video stream at up to 120 Hz. Second, we develop
a visually guided robot arm controller that combines the new
visual perception module with a torque-based model predictive
control algorithm. Asynchronous combination of the visual and
robot proprioception signals at their corresponding frequencies
results in stable and robust 6D object pose guided robot
arm control. Third, we experimentally validate the proposed
approach on a challenging 6D pose estimation benchmark and
demonstrate 6D object pose-guided control with dynamically
moving objects on a real 7 DoF Franka Emika Panda robot.

I. INTRODUCTION

Visually-guided control is at the core of many robotic
applications, from path following by mobile robots [1] to
visual servoing [2]. In order to achieve a stable and robust
feedback loop, the perception system has to recover the
estimated state both accurately and at a high rate. In the
context of object manipulation, a commonly chosen state
representation is the 6D pose of objects of interest, i.e.,
the 3D translation and 3D rotation of the objects in the
scene with respect to the camera coordinate frame. While
some manipulation tasks can be achieved with a static scene
model [3], many applications are of an inherently dynamic
nature with human-robot handovers [4], [5], human-robot co-
manipulation [6] or mobile manipulation [7] being the prime
examples. This is challenging as it requires accurate and low-
latency 6D pose estimation of the target objects in the scene.
In addition, pose estimates need to be integrated with a robust
and reactive controller that is capable of meeting the dynamic
requirements of the application.
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Fig. 1: Robot arm control by 6D pose of the object. The
objective is to control the robot arm with a mounted camera
(red arrow) by commanding joint torques such that the object
6D pose (blue arrow) w.r.t. the camera remains constant.
This is illustrated by three frames (see insets) captured by
the robot camera corresponding to the robot/object poses
shown by green contours in the main image. Please note
(see the insets) how the object pose remains stable while the
background changes in the captured frames. More results
and experimental analysis in the companion video.

Despite promising recent progress in object detection and
6D pose estimation [8], [9], [10], [11], [12], [13], 6D object
pose estimation algorithms usually focus on accuracy rather
than speed. On the other end, object 6D pose tracking
methods offer fast pose updates of already detected objects,
but require an initialization from the user [14]. As a result
of these limitations, many real-world applications rely in-
stead on fiducial markers [15], [16], [17], motion capture
systems [6], [5] or ad-hoc detection such as color based
segmentation [18].

In this paper, we propose a visual perception module
that builds on (i) state-of-the-art accurate learning-based 6D
object pose detector and (ii) state-of-the-art high-rate model-
based 6D pose tracker to achieve object pose estimation
limited only by the rate of image acquisition. Further, we
develop a visually guided robot controller based on the
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model predictive control (MPC) that is able to reactively
incorporate perception updates to meet application targets
(e.g., positioning the robot’s gripper). The anticipatory nature
of MPC makes it particularly suitable for generating efficient
motions in real time [19]. In principle, the only input data
required is a 3D object model to configure the 6D pose
tracker and the 6D pose estimator. Our method runs the
pose detector and several instances of the object tracker in
separate processes and uses the results of the pose detector
to re-initialize the trackers. New images are directly fed to
a tracker so that a pose estimation result is available within
the tracker runtime of approximately 5 ms. To quantitatively
validate our perception module, we build on the BOP chal-
lenge evaluation [9] and the YCBV dataset [20] to measure
the performance of the proposed method and several baseline
methods. Lastly, we demonstrate visually-guided robot arm
control with hand held objects (see Fig. 1).
Contributions. The paper has the following three main
contributions: (i) we propose a new visual perception module
that asynchronously combines accurate learning-based 6D
object pose localizer and a high-rate model-based 6D pose
tracker; (ii) we develop a visually guided robot arm controller
that leverages the new visual perception module in a torque-
based model predictive control algorithm; and (iii) we exper-
imentally validate the proposed approach on a challenging
6D pose estimation benchmark and demonstrate 6D object
pose-guided control with dynamically moving objects on a
real 7 DoF Franka Emika Panda robotic platform. We will
make the code publicly available.

II. RELATED WORK

Object 6D localization. The field of object detection and
6D pose estimation has shown impressive progress over
recent years, which has been documented and fostered by
the benchmark for 6D object pose estimation (BOP) and
the associated BOP challenge [8], [9]. Most methods follow
a two-step approach, first performing object detection in
RGB frames [21] followed by 6D pose estimation, assuming
the availability of object meshes. Learning-based techniques
have dominated the field. Among the diverse approaches,
render-and-compare methods [22], [10], [13], have achieved
superior performance by iteratively refining the 6D pose
based on predictions by a neural network. Due to their
iterative nature these methods achieve superior performance
but are slow to be used in real-time control. In this work, we
propose to combine a slow ”render and compare” 6D pose
localizer with a fast 6D pose tracker. Although the proposed
approach can work with an arbitrary localizer, we use pre-
trained CosyPose [10] in all our experiments.
Object 6D pose tracking. When a good initial guess of
the object 6D pose is available, it can be tracked frame to
frame by fast local methods. Object pose tracking methods
rely on object edges [23], extracted point features [24], [25],
or depth [26]. Region-based tracking approaches propose
to solve the 2D object shape segmentation and 6D pose
tracking problems jointly by constructing an image-wise
posterior distribution [27]. Although initial versions required

highly optimized GPU implementations to run at the camera
frequency [28], [29], a sparse formulation based on contour
point sampling [30] dramatically reduces the computation
time, down to a few milliseconds per image [31], [14] on
a single CPU. In this work, we rely on the ICG imple-
mentation [14] that features both region-based and depth
modalities. The combination of the 6D pose localizer and the
local 6D pose tracker that we propose in this paper combines
the benefits of the both world, i.e. the detection capability
and the accuracy of the localizer and speed of the tracker.
Visual servoing. Visual servoing aims at building a closed-
loop controller using visual information from a camera
stream to achieve a certain goal. The various methods are tra-
ditionally classified into two broad categories [2]: (i) image-
based visual servoing [32], [33], which uses 2D geometric
primitives (e.g., points, curves) to define control objective in
an image space; and (ii) pose-based visual servoing [34],
[35] which assumes the availability of the estimate of a
target 6D pose. Some works propose switching between
image- and pose-based servoing depending on the phase
of movement [36]. Although image-based servoing allows
to naturally incorporate visibility constraints in the control
law, pose-based servoing is closer to applications such as
object grasping [5]. We address the challenge of obtaining
robust and fast estimates of 6D poses for pose-based control.
These works typically implement control laws at the joint
velocity level, which lack the natural impedance of torque-
based control.
Model predictive control for visual servoing. For image-
based visual servoing, MPC has shown superior performance
to traditional reactive controllers [37], [38]. System dynamics
in an image space is either approximated analytically [37],
[38] or computed through learning-based optical flow esti-
mation methods [39]. Image-based MPC servoing was suc-
cessfully applied to control drone [40], legged platform [18],
or mobile manipulator [41], [42]. Contrary to the state-of-
the-art methods using image space MPC, we propose using
MPC for pose-based control, where 6D pose is obtained by
the proposed perception module.

III. OBJECT POSE GUIDED MODEL PREDICTIVE CONTROL

The objective of the proposed system is to perform manip-
ulation tasks with respect to the 6D pose of a dynamically
moving object using a camera mounted on a robot. The
key technical challenge in such situations addressed by our
method lies in achieving an accurate 6D pose estimation
without introducing a significant delay into the control loop.
The estimated 6D pose is then used in combination with
MPC to achieve optimal control of the robot.

The proposed method is a 1 kHz torque level MPC
controller taking reference from 6D object poses obtained
from the 30 Hz image stream. To achieve this real-time robot
control performance, the perception and control modules run
asynchronously, as shown in Fig. 2. The perception module
detects objects of interest in the scene and tracks them in
a fast and temporally consistent manner as described in
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Fig. 2: Overview of the perception-control cycle. The objective of the feedback control is to track 6D pose of an object
seen by a camera, as illustrated on the right by a robot and red cheez-it box. To achieve that, we designed a perception
module that runs a fast local Tracker on an input image Ik with the initial pose Tk−1 selected either from the previous run
of the tracker or from the 6D pose localizer & Time delay corrector modules, if that information is available. The 6D pose
localizer is slow and the objective of the Time delay corrector is to catch-up in time by quickly tracking through images
stored in the buffer while the 6D pose localizer was computing. The output of the tracker, the pose Tk, is used by the OCP
solver to compute Ricatti gains K0 and torques τ0 that are used by the Ricatti Linearization module to provide fast feedback
for real-time robot control. Typical processing frequencies of individual modules are 5 Hz for the 6D pose localizer and the
time delay corrector, 30 Hz for the camera and tracker, 100 Hz for the OCP solver, and 1 kHz for real-time robot control.

Sec. III-A. The key innovation is handling the inherent asyn-
chronicity of the accurate-but-slow 6D pose localizer and
fast-but-local tracker via the time delay corrector module that
operates on the buffered images in order to catch-up in time.
The 6D poses of objects detected by the perception module
are used by the Optimal Control Problem (OCP) [43] solver
and a feedback controller using a Ricatti Gains linearization
of the solution [44] to compute torques for the robot at
1 kHz, as described in Sec. III-B. In the following sections,
I symbols represent RGB image frame, while T ∈ SE(3) is
a rigid body transformation.

A. Temporally consistent 6D object pose tracker

The objective of the perception module is to compute the
6D poses of objects in the scene based on the input image Ik,
observed at discrete time k while introducing as little delay
as possible. Although the proposed method can track an
arbitrary number of objects, we describe the tracking of a
single object pose Tk to simplify the notation.
6D pose localizer. With unlimited computational resources,
the pose of an object can be estimated by the 6D pose
localizer Tk = flocalize(Ik) that detects the object of interest
in the image and estimates its 6D pose with respect to
the camera coordinate frame and, as a consequence, also
the robot coordinate frame, as we assume the camera is
calibrated with respect to the robot. However, robust object
localizers are slow, e.g. 0.25 s for CosyPose [10] or even
30 s for MegaPose [13] on up-to-date hardware (see Sec. IV).
The long computation time makes the localizer impractical
for closed-loop control.
Tracker. To mitigate this limitation, we combine the localizer
with a fast local tracker Tk = ftrack(Ik, Tk−1) that computes
the pose of objects from a given image Ik and initial guess
of the pose Tk−1. Compared to the localizer, a single pass of

the tracker is fast, introducing only a few milliseconds delay
into the system. However, it acts only locally, and it thus
requires an initial pose that is refined based on the observed
image. The tracker is not able to discover the presence of
new objects, nor does it detect that the object is no longer
visible by the camera when it is, for example, occluded.
Object localization and tracking (OLT). We combine
the localizer and the tracker into a single perception mod-
ule Tk = fOLT(Ik, Tk−1) that computes fast feedback at
the frequency of ftrack while running flocalize in parallel for
object (re-)discovery and more accurate pose estimation.
Our architecture, shown in the perception plate of Fig. 2,
runs ftrack(Ik, Tinit) on the current image with the initial
pose Tinit selected either from (i) the previous iteration of the
tracker, i.e. Tk−1 or (ii) the separate process that localizes
the object if that information has already been computed by
the time delay corrector for the previous image Ik−1, i.e. end
of the image buffer. The main tracker is initialized once the
first frame to enter the system has been processed by the
localizer and time delay corrector.
Time delay corrector. In the parallel process, a single
instance of the localizer is run all the time the resources are
available. Let us assume that the localizer started processing
input image Ik−N at time k − N . It takes some time
to get output of flocalize during which new images arrive
and are stacked inside a buffer. Once the pose Tk−N =
flocalize(Ik−N ) is computed, a second instance of the tracker
is run on all images inside the buffer, i.e. Ti = ftrack(Ii, Ti−1)
iteratively for i ∈ {k −N + 1, . . . , k − 1} while providing
the final pose computed at the time k − 1 to the main
tracker process. The timeline of the perception module is
illustrated in Fig. 3. Note that our architecture assumes that
the frequency of ftrack(·) is higher than the frequency of the
input image stream. Otherwise, the localizer process would
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Fig. 3: Perception module timeline. The first row illustrates
the stream of images with typical delay between images δI
being 33 ms. The second row illustrates the delay caused
by the tracker module (i.e. ftrack), denoted by δtrack that
corresponds to a few milliseconds and therefore output poses
(green ticks) are produced at the frequency of the input image
stream. The tracker needs initial pose that is taken either from
previous run of the tracker or from the 6D pose localizer &
time delay corrector modules if possible as indicated by pur-
ple arrows. The 6D pose localizer runs flocalize (with typical
δlocalize being a few hundreds of milliseconds) followed by
ftrack applied N−1 times on the buffered images (green ticks
in the third row).

never catch-up with the main process. With the state-of-the-
art tracker [14], this feedback can be easily calculated for
image frequencies up to 120 Hz. However, the higher the in-
put image frequency, the longer it takes to inject information
from the localizer process. This affects the tracking accuracy
as we analyze in Sec. IV.

B. 6D pose-based visual servoing using MPC

We design a controller that brings the camera attached to
the robot end-effector to a user-defined relative pose w.r.t.
the object pose Tk obtained from the object tracker. As
a practical application, one may choose a reference pose
from a set of predefined grasp poses for a given object. The
challenge of the control lies in a real-time requirement of the
robot to receive torque commands at 1 kHz. To address this
challenge, we build on [44] and split the control into solving
the optimal control problem at 100 Hz and computing 1 kHz
feedback through Ricatti linearization, but here incorporating
the 6D object poses as a guiding reference in the problem
formulation.
OCP solver. The control module’s main objective is to
follow the object given the latest object pose estimates Tk

provided by the perception and the current robot state x =(
q⊤ q̇⊤)⊤, with q and q̇ being the measured joint angles

and velocities, respectively. We control the manipulator at
the torque level (i.e. u = τ ) to be able to exploit the
natural dynamics of the manipulator and obtain smoother
motions. Solving the Optimal Control Problem (OCP) pro-
duces optimal state and control trajectories over a fixed time
horizon, where optimality is defined by a set of weighted
high-level objectives. The resolution of the OCP is done
in the framework of Differential Dynamic Programming
(DDP) [45] and is implemented using the Feasibility-driven

DDP solver [43]. The OCP is transcribed to a nonlinear
program by discretizing the continuous problem using a
direct multiple-shooting strategy:

argmin
u0,...,uM−1
x1,...,xM

M−1∑
i=0

li(xi,ui) + lM (xM ) ,

s.t. xi+1 = f(xi,ui), ∀i ∈ {0, . . . ,M − 1},
x0 = x̂ ,

(1)

where x̂ is the latest robot state measurement, xi and ui

are the state of the robot and the applied control at discrete
time i, f(xi,ui) describes the robot dynamics (i.e. articu-
lated body algorithm), and li and lM are running and terminal
costs, respectively. The tracking objective of the control is
specified by the costs, as we describe in Sec. III-C. Given
an initial guess, the DDP algorithm solves (1) and returns a
sequence of states and control actions by iterating Bellman
recursions (see [43] for more details).
Ricatti linearization. Besides trivial systems and a short
time horizon, it is impossible to solve OCP at the robot con-
trol frequency, i.e. 1 kHz. However, it has been shown [44]
that the Ricatti gains K0 obtained as a byproduct of the OCP
solution can be used to implement a first-order approximation
of the optimal policy. Denoting by τ0 = u∗

0 the first step of
the optimal control obtained from the OCP solver, the linear
approximation of the optimal policy is:

τ (x) = τ0 +K0(x− x0) , (2)

where x is the latest robot state measurement and x0 is the
state of the robot for which the OCP solution was found. This
computation is immediate, it decouples the OCP problem
complexity from the real-time constraints, and it allows us
to solve long-horizon problems.

C. Tracking objective

The behavior of the controller is defined by the formu-
lation of the running and terminal costs in eq (1). For our
tracking problem, we formulate the costs as follows:

li(xi,ui) = wvlv(xi) + lx(xi) + lu(xi,ui) ,

lM (xM ) = wvlv(xM ) + lx(xM ) ,
(3)

where lv(·) is the tracking cost scaled by wv and lx(·) and
lu(·) are state and control regularization costs, respectively.
Tracking cost. We define a tracking cost to minimize the
SE(3) distance between the estimated pose of the object
and the reference pose of the object Tref, both expressed in
the robot base frame, i.e.:

lv(x) =
∥∥∥log ((TBC(qk)Tk)

−1
TBC(q)Tref

)∥∥∥2 , (4)

where Tk = fOLT(Ik) is object pose estimated by the pro-
posed tracker, TBC(·) represents the forward kinematics from
the robot base to the camera, and the operator log represents
the SE(3) log map [46]. The tracking cost approaches zero
if the transformation between the robot camera and estimated
object pose approaches Tref.



State regularization cost. We define the cost of state
regularization as lx(x) = (x− xrest)

⊤
Qx (x− xrest) with

xrest =
(
q⊤

rest 0⊤)⊤ penalizing joint configurations far from
a fixed rest configuration qrest and penalizing high joint
velocities at the same. The objective of the regularization
cost is to prevent robot null-space motion, i.e. motion that
does not affect the pose of the camera itself. It is required
for redundant robots, where the number of DoF for robot is
higher than the task-space number of DoF. Regularization
of the joint velocity prevents the solver from computing
motions that are too aggressive. We set qrest to be the first
configuration read after starting the controller.
Control regularization cost. The control regularization,
achieved by lu(x,u) = (u− urest(x))

⊤
Qu (u− urest(x)),

regularizes the controls so that they are not far from urest(x),
where urest(x) is a torque that compensates for gravity at the
robot configuration x.

IV. EXPERIMENTS

In this section, we first quantitatively evaluate the proposed
perception module on the YCBV dataset [20] that contains
standardized objects that we also use in the second part of
the section for the 6D pose-guided feedback control task on
a real Franka Emika Panda robot. For the implementation of
the localizer, we use CosyPose [10] and for the tracker we
use ICG [14] unless specified otherwise.

A. Quantitative evaluation of the perception module

We quantitatively evaluate the new perception module on
the YCBV dataset [20] using the 6D object pose (BOP
benchmark) evaluation metrics [9]. The YCBV dataset con-
sists of several videos of a moving camera showing a subset
of 22 objects available in the dataset. Every frame of the
video is annotated with the ground truth poses for all objects
visible in the scene. We use the YCBV dataset because of
the availability of the real objects for real-world experiments
and of the pre-trained models for the CosyPose [10] object
pose estimator. We use the BOP toolkit [9] to compute
standard 6D pose error metrics to assess the quality of pose
estimates. The evaluation procedure feeds the images of the
input video sequence in order and with a given frequency to
the perception module. The output poses are compared with
the ground truth by evaluating BOP Average Recall score
defined in [9]. The results of the evaluation procedure are
shown in Fig. 4 and discussed next.
Evaluation baselines. There are two main baselines shown
in the plot: (i) Localizer, that runs localizer on every frame of
the video, and (ii) Tracker-InitLocalizer that runs the tracker
with initialization computed by the localizer on the first
frame of the video. Both baselines are shown as horizontal
lines as they were evaluated independently on the frequency
of the image stream. The Localizer is introducing high time
delay in the system and, therefore, is not suitable for closed-
loop control. However, the results show that the localizer is
accurate. The Tracker, on the other hand, runs online with
only a small delay, but is not capable of (re-)discovering new
or lost object tracks. Therefore, its average recall is small.
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Fig. 4: Average recall (higher is better) of BOP metrics [9]
measuring the accuracy of 6D pose estimation of different
implementations of object localization and tracking. The
comparison was run on the YCBV video dataset replayed
at different frequencies on the same hardware.

OLT evaluation. Our method (OLT), lies in between the two
baselines. It runs online with the same delay as Tracker but
also achieves the Localizer’s recall for the low frequencies
of the input image stream. The average recall drops with
increasing frequency as the output pose of the localizer is
injected into the tracker less frequently. Asymptotically, for
image stream frequency approaching the tracker computation
frequency, the OLT’s recall would approach performance of
pure tracker as the time delay corrector would never catch-up
in time with the tracker process.
OLT without tracker. To assess the influence of the tracker,
we perform an ablation study in which we redefine the
tracker as identity mapping, i.e. Tk = ftrack(Ik, Tk1) :=
Tk−1. The recall obtained for various image stream frequen-
cies is shown as OLT-NoTracker curve in Fig. 4. It can be
seen that the influence of the ICG tracker (i.e. OLT (ours))
increases with frequency compared to the identity tracker.
Therefore, the local tracker plays an important role during
the computing time of the localizer. Note that this effect
is more pronounced for fast-moving objects which are not
present in the YCBV dataset.
Replicability of the results. As shown in Fig. 4, the
average recall of our method depends on the input image
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Fig. 5: Step-response of the MPC (without the perception)
after simulating the target pose rotation by 30 degrees.



Fig. 6: Visualization of the step-response experiment. The first row shows the images captured by the camera mounted
on the robot together with the projection of the pose estimated by our perception module (green contour) and the projection
of the target reference pose (blue contour). The second row shows the images captured by an external camera depicting the
motion of the robot. The goal of the controller is to move the robot end-effector to a given fixed relative pose w.r.t. the
detected object pose. The initial configuration of the manipulator is intentionally set away from the target to evaluate the
step response of the system. The controller brings the camera close to the desired reference pose in 1.5 seconds. Please see
the supplementary video for additional examples and experimental analysis.

stream frequency, as the localizer produces a more accurate
6D pose less often. Therefore, the computed values also
depend on the hardware, and thus are only comparable when
run on comparable setups. We evaluated all methods on
the same computer equipped with 12 cores AMD® Ryzen
Threadripper PRO 3945WX CPU and a NVIDIA GeForce
RTX 3080 GPU.

B. Visually guided feedback control

We experimentally validate the design of our 6D object
perception module together with the MPC controller using
the following experimental setup. We use a 7 DoF Franka
Emika Panda robot equipped with a RealSense D455 cam-
era attached to its end-effector (eye-in-hand configuration).
The camera mounting w.r.t. end-effector was calibrated. We
configured the camera to produce an RGB video stream at
30 Hz with a 640x480 resolution. We control the Panda
robot in torque-level control mode that requires commands
to be sent at 1 kHz frequency. This justifies the use of
the Ricatti Linearization module, which guarantees that a
torque command will be computed at this rate. The OCP
is solved with Crocoddyl [43] which uses the efficient robot
dynamics implementation from Pinocchio [47]. To model the
dynamics of the robot, we use inertial parameters from [48].
Computations of the perception module and OCP solving is
handled by a computer described in Sec. IV-A. The 1 kHz
Ricatti linearization control loop is computed on another real-
time-preempted computer to guarantee the response time re-
quirements of the Panda robot. The communication between
the real-time and the non-real-time computer is implemented
using the robotic operating system (ROS) [49].
MPC control evaluation. To assess the quality of the MPC
control, we perform an experiment on a Panda robot where
we analyze the step response of the controller after artificially
rotating the target 6D pose by 30 degrees, i.e. the perception

module is not used in this experiment. The evolution of the
translation tracking error is shown in Fig. 5 for different
values of tracking weight wv (see eq. (3)). The results
confirm that the tracker converges towards the target with
steady-state error depending on the tracking weight. The
orientation error (not shown) follows the same pattern. Based
on the results, we have chosen the tracking weight wv to be
equal to 20 since the steady-state error is acceptable for our
task and a lower weight leads to less aggressive behavior of
the controller. The other weights in the cost were set as Qx =
diag(0.3, . . . , 0.3, 3, . . . , 3) and Qu = diag(0.1, . . . , 0.1).
MPC tracking validation. We set up a closed-loop robot
control experiment shown in Fig. 6 in which the perception
and control modules enable us to bring the end-effector of
the robot to a desired reference pose with respect to a YCBV
object. Despite the relatively fast motion of the end effector
and the presence of specular reflections on the object surface,
the tracker is able to maintain an accurate estimation of the
object pose throughout the trajectory. More examples are
presented in the accompanying video.

V. CONCLUSION

Accurate and low-latency object pose estimation is nec-
essary to enable robot interaction with dynamically moving
objects, for example, in human-robot handover tasks. Our
work shows that a high-accuracy but slow 6D pose localizer
and fast frame-to-frame 6D pose object trackers can be
combined to obtain low latency (< 5 ms) pose estimates.
The proposed algorithm has been validated through both
(i) a quantitative study on a benchmark of common house-
hold objects and (ii) by developing an MPC-based object
pose tracking feedback controller. This work opens up the
possibility of visually guided manipulation in 3D dynamic
environments, for example, in human-robot collaboration or
mobile robot manipulation, without the need for fiducial
markers or motion capture systems.



REFERENCES

[1] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long-range
rover autonomy,” Journal of field robotics, vol. 27, no. 5, pp. 534–560,
2010.

[2] F. Chaumette, S. Hutchinson, and P. Corke, “Visual servoing,” Springer
handbook of robotics, pp. 841–866, 2016.

[3] T. Chabal, R. Strudel, E. Arlaud, J. Ponce, and C. Schmid, “Assem-
bly planning from observations under physical constraints,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 10223–10229, IEEE, 2022.

[4] V. Ortenzi, A. Cosgun, T. Pardi, W. P. Chan, E. Croft, and D. Kulić,
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[13] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Trem-
blay, J. Carpentier, M. Aubry, D. Fox, and J. Sivic, “Megapose: 6d
pose estimation of novel objects via render & compare,” arXiv preprint
arXiv:2212.06870, 2022.

[14] M. Stoiber, M. Sundermeyer, and R. Triebel, “Iterative corresponding
geometry: Fusing region and depth for highly efficient 3d tracking of
textureless objects,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6855–6865, 2022.

[15] M. Fiala, “Artag, a fiducial marker system using digital techniques,”
in CVPR, 2005.

[16] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, 2014.

[17] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in
ICRA, 2011.

[18] R. Parosi, M. Risiglione, D. G. Caldwell, C. Semini, and V. Barasuol,
“Kinematically-decoupled impedance control for fast object visual
servoing and grasping on quadruped manipulators,” arXiv preprint
arXiv:2307.04918, 2023.

[19] E. Dantec, M. Naveau, P. Fernbach, N. Villa, G. Saurel, O. Stasse,
M. Taix, and N. Mansard, “Whole-body model predictive control
for biped locomotion on a torque-controlled humanoid robot,” in
2022 IEEE-RAS 21st International Conference on Humanoid Robots
(Humanoids), pp. 638–644, IEEE, 2022.

[20] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and
A. M. Dollar, “Benchmarking in manipulation research: The ycb
object and model set and benchmarking protocols,” arXiv preprint
arXiv:1502.03143, 2015.

[21] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
pp. 2961–2969, 2017.

[22] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep iterative
matching for 6d pose estimation,” in Proceedings of the European
Conference on Computer Vision (ECCV), pp. 683–698, 2018.

[23] C. Harris and C. Stennett, “Rapid-a video rate object tracker.,” in
BMVC, pp. 1–6, 1990.

[24] E. Rosten and T. Drummond, “Fusing points and lines for high
performance tracking,” in Tenth IEEE International Conference on
Computer Vision (ICCV’05) Volume 1, vol. 2, pp. 1508–1515, Ieee,
2005.

[25] A. I. Comport, E. Marchand, M. Pressigout, and F. Chaumette, “Real-
time markerless tracking for augmented reality: the virtual visual ser-
voing framework,” IEEE Transactions on visualization and computer
graphics, vol. 12, no. 4, pp. 615–628, 2006.

[26] S. Trinh, F. Spindler, E. Marchand, and F. Chaumette, “A modular
framework for model-based visual tracking using edge, texture and
depth features. in 2018 ieee,” in RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 89–96.

[27] B. Rosenhahn, T. Brox, and J. Weickert, “Three-dimensional shape
knowledge for joint image segmentation and pose tracking,” Interna-
tional Journal of Computer Vision, vol. 73, pp. 243–262, 2007.

[28] V. A. Prisacariu and I. D. Reid, “Pwp3d: Real-time segmentation
and tracking of 3d objects,” International journal of computer vision,
vol. 98, pp. 335–354, 2012.

[29] V. A. Prisacariu, O. Kähler, D. W. Murray, and I. D. Reid, “Real-time
3d tracking and reconstruction on mobile phones,” IEEE transactions
on visualization and computer graphics, vol. 21, no. 5, pp. 557–570,
2014.

[30] W. Kehl, F. Tombari, S. Ilic, and N. Navab, “Real-time 3d model
tracking in color and depth on a single cpu core,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 745–753, 2017.

[31] M. Stoiber, M. Pfanne, K. H. Strobl, R. Triebel, and A. Albu-Schäffer,
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